Search results

1 – 3 of 3
Article
Publication date: 23 September 2021

Nitish P. Gokhale and Prateek Kala

This study aims to develop and demonstrate a deposition framework for the implementation of a region-based adaptive slicing strategy for the Tungsten Inert Gas (TIG) welding-based…

Abstract

Purpose

This study aims to develop and demonstrate a deposition framework for the implementation of a region-based adaptive slicing strategy for the Tungsten Inert Gas (TIG) welding-based additive manufacturing system. The present study demonstrates a deposition framework for implementing a novel region-based adaptive slicing strategy termed as Fast Interior and Accurate Exterior with Constant Layer Height (FIAECLH).

Design/methodology/approach

The mentioned framework has been developed by performing experiments using the design of experiments and analyzing the experimental data. Analysis results have been used to obtain the mathematical function to integrate customization in the process. The paper, in the end, demonstrates the FIAECLH framework for implementing region-based adaptive slicing strategy on the hardware level.

Findings

The study showcase a new way of implementing the region-based adaptive slicing strategy to arc-based metal additive manufacturing. The study articulating a new strategy for its implementation in all types of wire and arc additive manufacturing processes.

Originality/value

Wire-arc-based technology has the potential to deliver cost-effective solutions for metal additive manufacturing. The research on arc welding-based processes is being carried out in different dimensions. To deposit parts with complex geometry and better dimensional accuracy implementation of a novel region-based adaptive slicing strategy for the arc-based additive manufacturing process is an essential task. The successful implementation of an adaptive slicing strategy would ease the fabrication of complex geometry in less time. This paper accomplishes this need of implementing a region-based adaptive slicing strategy as no experimental investigation has been reported for the TIG-based additive manufacturing process.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 June 2022

Rishi Parvanda and Prateek Kala

Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The…

Abstract

Purpose

Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The study aims to extend the use of FDM printers for 3D printing of low melting point alloy (LMPA), which has applications in the electronics industry, rapid tooling, biomedical, etc.

Design/methodology/approach

Solder is the LMPA with alloy’s melting temperature (around 200°C) lower than the parent metals. The most common composition of the solder, which is widely used, is tin and lead. However, lead is a hazardous material having environmental and health deteriorating effects. Therefore, lead-free Sn89Bi10Cu non-eutectic alloy in the form of filament was used. The step-by-step method has been used to identify the process window for temperature, print speed, filament length (E) and layer height. The existing FDM printer was customized for the present work.

Findings

Analysis of infrared images has been done to understand discontinuity at a certain range of process parameters. The effect of printing parameters on inter-bonding, width and thickness of the layers has also been studied. The microstructure of the parent material and deposited bead has been observed. Conclusions were drawn out based on the results, and the scope for the future has been pointed out.

Originality/value

The experiments resulted in the process window identification of print speed, extrusion temperature, filament length and layer height of Sn89Bi10Cu which is not done previously.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 3 of 3